Precision Electroweak Measurements at Energy Frontier
Ashutosh Kotwal
Duke University

Collisions That Changed The World

"l £
Ink'l Herald Trilbune

Snowmass Energy Frontier Workshop

Brookhaven National Laboratory,
April 4, 2013



Why are we here?



Why am I here ?



Why am I here ?

spend
Q: Why is it important to you to |l your life measuring the

W mass to high precision?



Why am I here ?

spend
Q: Why is it important to you to |l your life measuring the

W mass to high precision?

A: Quantum loop effects are a lot of fun to measure, and | think they
will continue to guide us towards the next (BSM) theory



Detecting New Physics through Precision Measurements

e Willis Lamb (Nobel Prize 1955) measured the difference between
energies of S, and °P,, states of hydrogen atom

- 4 micro electron volts difference compared to few
electron volts binding energy

- States should be degenerate in energy according to tree-
level calculation

e Harbinger of vacuum fluctuations to be calculated by Feynman
diagrams containing quantum loops

- Modern quantum field theory of electrodynamics followed
( Nobel Prize 1965 for Schwinger, Feynman, Tomonaga)
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Motivation for Precision Measurements

e Radiative corrections due to heavy quark and Higgs loops and exotica
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Motivate the introduction of the p parameter: My? = p [My(tree)]?
with the predictions Ap = (p-1) OM,,,* and Ap Oln M,

« In conjunction with M, the W boson mass constrains the mass of the

SM Higgs boson, and possibly new particles beyond the standard
model



Generic Parameterization

e Generic parameterization of new physics contributing to W and Z
boson self-energies through radiative corrections in propagators

- §, T, U parameters (Peskin & Takeuchi, Marciano & Rosner, Kennedy
& Langacker, Kennedy & Lynn)
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S Tand U

* Generic parameterization of new physics contributing to # and Z
boson self-energies: S, 7, U parameters (Peskin & Takeuchi)

1.0

0.5

a” (900/0 CL) I ! ] ] L] ] I | | L] L] II I ] L] | | ] I L] L] I/ ) ;
— (90% CL) ! | RIS
asymmetrles ' | RARI J'/”-
-7
My ] LT -
— — - Vv scattering | ,‘F - /)
— - - e scattering | Pt s 7
i vl , ./ T
_ > L ~
B I ‘/ / /// -
1, S -
L ' ] /// -
= A ./. /f' -
’ . +
- 7’ ST . -
e ” | T /
B v | -7 . ]
i pAd =T / Az M ~ 120 GeV 1
b . — - l /0 / -
g ; : -
- 7/ R MH > 600 GeV
— ] 1 1 ] I 1 [ ] 1 ] Il 1 / ] 1 I ( ] | g I 1 ] [ ] 1 I ] ] 1 [ ]
-1.0 -0.5 0 0.5 1.0 1.5
S

Additionally, M_ 1s the
Y

only measurement which
constrains U

(from P. Langacker, 2012)

M, and Asymmetries are the most powerful observables in this parameterization



Extended Higgs Sector

e An example: extending the Higgs sector to two SU(2) doublets (required in
SUSY) predicts additional neutral scalar and pseudo-scalar, and charged

Higgs bosons

Two-Higgs Doublet Model
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(from M. Baak et al. (Gfitter Group) Eur. Phys. J. C (2012) 72:2003)
T parameter responds strongly to 2HDM parameters



Complementarity
« Note complementarity with precision 4’ measurements:

- for B-a = T1/2, h° couplings to WW and ZZ equal its SM couplings

Two-Higgs Doublet Model
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(from M. Baak et al. (Gfitter Group) Eur. Phys. J. C (2012) 72:2003)
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What i1s MW sensitive to in MSSM?

2HDM embedded in MSSM characterized by tan[3 and m

At tree level, m ~m_cos 23, m, ~ (2b/ sin2[3)”* with either

- b not too small (> 20 GeV), or
- tanf3 large

o Otherwise m and m too small

Using tree-level masses of Higgses, calculate S, 7, U (Baak et al.,
EPJC 72,2003 (2012) and references therein) due to 2HDM

- For allowable tanBand m , S, T U < 1%

M, appears insensitive to 2HDM sector of MSSM



What 1s MW sensitive to in MSSM?

e (Caveat: tree-level masses of additional Higgses tend to become
degenerate in MSSM

e Loop corrections to these masses may break degeneracy and
induce non-zero S, 7, U

_ Ime+ -m, ~ 70 GeV, T~15%
- With 5MW ~ 7 MeV, can be 60 effect
- LHC, ILC should aim for 6MW ~ 5 MeV each



What i1s MW sensitive to in MSSM? Other Models?

We should find out —M_ provides a window to what aspect of new
physics ?

Could provide an answer to the “challenge” from Chip and Michael:

- If MW = 80420 = 7 MeV, what would we do?

- What would we have learnt?

We need to distill down the loop effects in MSSM to the dominant ones

Can yield a crisp answer for funding agencies, Congress and perhaps even
the taxpayer

- We should not underestimate the taxpayer's ability to appreciate
deep physics if informed in crisp and simple way
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What 1s MW sensitive to in MSSM?

Expect large mass splitting between stop states

- large m expected to induce large mixing

Large mass splitting can make at least one stop light

We should 1solate and highlight the quantitative sensitivity of stop
mass splitting on M

In conjunction with direct stop search sensitivity, can make a crisp
(compelling?) paragraph in Energy Frontier executive summary



M, [GeV]

2012 Status of My, vs Mtop

| | I I | | | | | | | I I 1 | | I | | | l | 1 | I ]
80.70 | experimental errors 68% CL: o
I LEP2/Tevatron: today light SUSY |
80.60 |- .
80.50 - MSSM| —
80.40 — == 1SN
80.30 = —
| |SM MSSM _
80.20 - M, =127 GeV SM, MSSM [
B | Heilnemeyer, Hollik, Stockinger, Weiglein, Zeune 12 7

160 165 170 175 180 185
m, [GeV]



Improved My, vs M, __ (half the current uncertainties)
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Other Comments

e MSSM is nice (due to “minimal”) but also fine-tuned at ~1% now?

e s it time to move to NMSSM, and/or something else?

- NMSSM answers the question — how can U term (which 1s SUSY-
invariant) be close to Electroweak scale ?
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e MSSM is nice (due to “minimal”) but also fine-tuned at ~1% now?

e s it time to move to NMSSM, and/or something else?

- NMSSM answers the question — how can U term (which 1s SUSY-
invariant) be close to Electroweak scale ?

My recommendation: find a way to connect Energy Frontier physics with
Dark Matter

- Lot of circumstantial evidence that Dark Matter ~ TeV-scale WIMP
- Dark matter PROVES that BSM physics exists

- Taxpayer finds Dark Matter fascinating (perhaps even more than
Higgs)
- Its good to be 1n the intersection of Frontiers Venn diagram
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e Loops are at the heart of Quantum Field Theory
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from scale-invariant Lagrangian => proton mass



Final Comments

Loops are at the heart of Quantum Field Theory

Loops have served us well so far, don't give up on them now

- e.g. QCD quantum loops => running of 0 => mass scale (/\QCD)

from scale-invariant Lagrangian => proton mass

Loops => fine-tuning problem of SM should be taken seriously and should
continue to guide our thinking

- What keeps the Higgs boson's mass low?

- May also solve half of the cosmological constant problem (on a log
scale)
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Fine-tuning + Dark Matter = a physics case for Energy Frontier r
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